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Abstract. Tracer diffusion experiments have historically furnished much of the information about 

fundamental diffusion processes as embodied in such quantities as tracer correlation factors and 

vacancy-atom exchange frequencies. As tracer diffusion experiments using radiotracers are rather 

less often performed nowadays, it is important to be able to process other diffusion data to provide 

similar fundamental information. New procedures that are primarily based around the random alloy 

model have been established recently for analyzing chemical diffusion data in binary and ternary 

alloy systems. These procedures are reviewed here. First, we review the random alloy model, the 

Sum-rule relating the phenomenological coefficients and three diffusion kinetics formalisms 

making use of the random alloy. Next, we show how atom-vacancy exchange frequency ratios and 

then component tracer correlation factors can be extracted from chemical diffusion data in alloy 

systems. Examples are taken from intrinsic diffusion and interdiffusion data in a number of binary 

and ternary alloys.  

Introduction 

It is interesting to note that it was a chemical diffusion experiment performed almost sixty years ago 

showing the Kirkendall shift that provided the definitive evidence to the diffusion community that 

vacancies are the principal vehicles by which atoms migrate in metals and alloys [1]. Over the 

years, however, tracer diffusion experiments, by way of isotope effect measurements [2], analysis 

of curvatures of Arrhenius plots [3], pressure dependence [4], analysis of enhancement factors for 

solvent diffusion in dilute alloys [5], Haven Ratio measurements (in ionic conductors) [6], 

composition dependence [7], have provided almost all of the fundamental information about atomic 

diffusion processes. For a variety of reasons however, relatively few laboratories world-wide 

continue to perform measurements of tracer diffusion coefficients using radioisotopes though it 

needs to be acknowledged that this trend has been offset to some extent by the widespread use of 

SIMS measurements using stable isotopes.  

Chemical or interdiffusion diffusion data are generally obtained for the very practical reasons of 

assisting the fabrication/synthesis of engineering materials or predicting the extent of reaction with 

adjoining metals in-service. Such data have very rarely been analyzed to provide fundamental 

information about diffusion, by which we mean atom-vacancy exchange frequencies and 

correlations between jump directions of the atoms as embodied in correlation factors. The amount 

of chemical/interdiffusion diffusion data is very large; see, for example, the extensive compilations 

for interdiffusion data in binary alloys [8] and ternary alloys [9]. In view of the above, it is 

appropriate therefore to seek and develop new ways of extracting fundamental diffusion 

information from such data. Nonetheless, it needs to be recognized that the accuracy of chemical 

diffusion data does not usually approach what has been routinely possible in tracer diffusion 

experiments performed on metals and alloys [10]. There are several reasons for this. Tracer 

diffusion experiments are normally carried out on well-annealed specimens where the vacancy 

concentration is at equilibrium. Whilst the starting materials of an interdiffusion couple will 

generally be well-annealed, during the interdiffusion experiment itself, vacancies are created and 

annihilated at sources and sinks, typically by dislocation climb. (This creation/annihilation of 
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vacancies occurs because the diffusion coefficients of the components themselves are normally 

unequal which leads to a net vacancy flux, and the Kirkendall effect.) If these vacancy sources and 

sinks are not efficient or are not at sufficiently high densities, then vacancy super-saturation and 

under-saturation during interdiffusion can readily occur. It is not easy to estimate the effects on 

interdiffusion of such possible non-equilibrium vacancy concentrations [11]. Furthermore, in 

contrast to standard tracer serial sectioning experiments, it is also not straightforward to estimate 

possible contributions to chemical diffusion processes from grain boundary diffusion processes. 

Indeed, it is probably fair to say that rather little is known about chemical diffusion in the presence 

of grain boundaries.  

In this paper, we review some of the recent methods in the analysis of chemical diffusion data in 

order to extract fundamental diffusion information. In the next section we introduce the random 

alloy model: this forms the basis of the analysis of chemical diffusion in binary and ternary alloys. 

In that section we also introduce the Sum-rule relationships between the phenomenological 

transport coefficients, again for the random alloy. In the following section we introduce three 

diffusion kinetics formalisms that can be used with the random alloy model. In the following 

section we show how the Sum-rule and these diffusion kinetics formalisms can be used to extract 

exchange frequency ratios and tracer correlation factors from intrinsic diffusion coefficients that 

have been measured in binary and ternary alloy systems. In the final section we focus on the 

analysis of interdiffusion coefficients in binary and ternary systems and show how exchange 

frequency ratios and tracer correlation factors quantities can be extracted from interdiffusion data. 

The Random Alloy Model and the Sum-Rule 

The Random Alloy Model. In the random alloy model
 
introduced first by Manning [12]

 
the N 

atomic components and independent vacancies (at a vanishingly small concentration) are distributed 

randomly. The atom-vacancy exchange frequencies, notated as wi can be conceptualized in one of 

two ways. On the one hand, one can consider them simply as explicit frequencies that depend only 

on the species of atom and not on the surroundings. For example wA simply represents the basic 

vacancy- atom frequency of a given A atom at all compositions. On the other hand, one can also 

consider wA as representing an average frequency at a given composition. Then wA represents the 

average frequency of a given A atom as it migrates through the lattice sampling the various 

environments. Since the average environment must change with composition, then wA can also be 

expected to change with composition to reflect this [13].  
The Sum-rule between the Phenomenological Coefficients. A particularly useful and exact 

result of the random alloy model is the so-called ‘Sum-rule’ [14] that relates the phenomenological 

coefficients of non-equilibrium thermodynamics Lij to the vacancy-atom exchange frequencies and 

composition. The Sum-rule reduces the number of independent phenomenological coefficients. For 

example, in the binary alloy, there is only one independent phenomenological coefficient and not 

three. In the ternary alloy, there are three independent phenomenological coefficients and not six. In 

the N -component alloy the Sum-rule is written as: 
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where A is a constant. In terms of the collective correlation factors, which are the correlated parts of 

the phenomenological coefficients [15], Eq. 1 is rewritten as: 
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where )( j

ijf  are the collective correlation factors, sometimes also called correlation functions. Some 

examples of the immediate usefulness of the Sum-rule in chemical diffusion problems are provided 

in the next section. 

Diffusion Kinetics Formalisms for use with the Random Alloy 

The Darken Theory. Although not originally intended as diffusion kinetics formalism for the 

random alloy, it is convenient nonetheless to treat the Darken theory [16] here along with the other 

formalisms. There are various manifestations of the Darken theory depending on the diffusion 

context. The common feature however is that all off-diagonal phenomenological coefficients are 

first put equal to zero. This means that all correlation information as embodied in tracer correlation 

factors, collective correlation factors and vacancy-wind factors is ignored. The principal result of 

this is that the atoms of all species are assumed to always follow uncorrelated random walks thereby 

implying that all of the tracer correlation factors are simply given by: 

 fi≡1                                                                                                                                                (3) 

Similarly, all vacancy-wind factors appearing in expressions between tracer diffusion coefficients 

and interdiffusion and intrinsic diffusion coefficients vanish. Using the Darken approach a very 

simple relation then exists between the diagonal phenomenological coefficients and the tracer 

diffusion coefficients:  

Lii = ci D
*
i/kT ,    Lij = 0     for i ≠ j.                                                                                               (4) 

The Darken theory trivially follows the Sum-rule given above in Eq. 1. 

The Manning Theory. In the Manning diffusion kinetics theory [12], tracer correlation factors 

of the alloy components are given by the following expression: 
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with the function H being the positive root of the following equation: 
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where f0 is the geometric correlation factor defined by the crystal structure; for example, f0 = 

0.78145 for the f.c.c. lattice. In Manning’s approach, the phenomenological coefficients are directly 

related to the tracer diffusion coefficients by:  
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where k and T have their usual meanings and M0 = 2f0/(1-f0) These relations are frequently referred 

to as the ‘Manning Relations’. It is worth noting that the Manning Relations can also be obtained on 

the basis of two somewhat intuitive assumptions without recourse to the random alloy model itself 

[17]. These Relations have been shown to be good approximations, even for alloys showing long 

range order [18]. 

The Moleko, Allnatt and Allnatt (MAA) Theory. It has been shown by Belova and Murch 

[19,20] that the self-consistent Moleko, Allnatt and Allnatt (MAA) [21] theory for diffusion kinetics 

in the random alloy provides the best agreement with results from Monte Carlo simulations for both 

tracer and collective correlation factors. However, the MAA kinetics equations are a good deal 

more complicated in structure than those of Manning and in practice considerably more difficult to 

implement for analysing experimental diffusion data. The expression for the tracer correlation 

factor fi for the atomic species i is formally similar to that given above in the Manning approach: 

ii

i
i

H

H
f

+γ
=
2

.                                                                                                                              (8) 

However, now the functions Hi are, in general, different for each species. The tracer correlation 

factors can be calculated using a system of equations; see, for example, [22]. Using the MAA 

theory there are no closed-form relations between the phenomenological coefficients and the tracer 

diffusion coefficients that are equivalent to the Manning Relations (Eq. 7). Nonetheless, it is still 

possible to use straightforward numerical methods to find all of the Lij from a given set of tracer 

diffusion coefficients for all atomic species [22]. 

Analysis of Intrinsic Diffusion Coefficients 

In this section we analyze intrinsic diffusion coefficients by making use of the Sum-rule introduced 

in Section 2 followed by processing using the Manning and MAA diffusion kinetics formalisms. 

Binary Alloy Systems. Intrinsic diffusivities are generally measured by way of marker shifts in 

the interdiffusion experiment. However, such measurements are rather tedious, especially in ternary 

alloys and, accordingly, the amount of intrinsic diffusivity data is somewhat limited compared with 

interdiffusivity data [8,9].  For the random alloy, the Sum-rule provides a surprisingly simple 

relationship between the ratios of the intrinsic diffusion coefficients and the ratio of the atom-

vacancy exchange frequencies at a given composition [23]. For example, for a binary alloy, we 

simply have that: 

DA/DB=wA/wB,                                                                                                                               (9)                     

where DA and DB are the intrinsic diffusivities in the AB binary alloy and wA and wB are the atom-

vacancy exchange frequencies. Note the absence of any off-diagonal phenomenological coefficients 

or any type of correlation factor in Eq. 9. Unfortunately, there are no simplifications for the 

corresponding tracer diffusion coefficients D*A and D*B: for the random alloy their ratio simply 

remains as: 

D*A/D*B=wA fA / wB fB,                                                                                                                (10)   

where fA and fB are the tracer correlation factors for A and B. As the first example of the use of Eq. 
9, in Fig. 1a we show results for the calculated ratio of the exchange frequencies wNi/wCu directly 

from the experimental intrinsic diffusivities in the Cu-Ni system [24]. As a further example, in Fig. 

2a we show results of the calculated ratio of exchange frequencies wAg/wCd directly from the 

experimental intrinsic diffusivities in the Ag-Cd system [25]. In Fig. 2a we also give the ratio of the 

exchange frequencies as obtained using the ratio of the experimental tracer diffusivities and the 

Manning formalism. We note that there is quite reasonable agreement of the results of processing 

these two types of diffusion measurement.  
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There has been a very long tradition in the solid-state diffusion research area to determine tracer 

correlation factors because these factors give very direct information on the degree of correlation in 

the random walks of the atoms. Tracer correlation factors have frequently been inferred by way of 

the diffusion isotope effect [2]. (In ionic conductors they can also be inferred from the Haven Ratio 

[6].) Tracer correlation factors can also be determined from the ratio of the tracer diffusion 

coefficients (with a knowledge also of the geometric tracer correlation factor f0 for the lattice) using 

the random alloy diffusion kinetics formalisms either of Manning or MAA. Importantly, they can 

also be determined directly using either of these theories if the ratio of the exchange frequencies is 

known (together with f0). In Fig.1b we first show the corresponding tracer correlation factors for Ni 

and Cu as obtained using the Manning formalism from the ratio of the exchange frequencies in Fig. 

1a. It is seen that Cu atoms have the lower correlation factors and are therefore the most correlated 

in their motion; this is particularly the case at low Cu compositions.   
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Fig. 1 (a) Ratio of the exchange frequencies for the Cu-Ni system at 1273 K using experimental intrinsic diffusion data 

[24]. (b) The corresponding tracer correlation factors of Cu and Ni after processing the data of (a) using the Manning 

diffusion kinetics formalism. 

 

Similarly, in Fig. 2b we give results for the tracer correlation factors fAg and fCd determined using 

the MAA formalism from wAg/wCd  and also from the tracer diffusivities [26].  It is seen that Ag 

atoms have the higher tracer correlation factors and therefore have the least correlated motion and 

vice versa for Cd atoms. Again it can be seen that there is quite reasonable agreement for the tracer 

correlation factors determined from these different diffusion experiments. 

Ternary Alloy Systems. For the ternary alloy A-B-C the Sum-rule (Eq. 1) gives the following 

simple relationship between the exchange frequency ratios and the ternary intrinsic diffusion 

coefficients: 
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Fig. 2 (a) The ratio wAg/wCd as a function of cCd at 873 K calculated using intrinsic diffusion coefficients [25] presented 

as a solid line and calculated from the tracer diffusion coefficients [26] using the Manning formalism and presented as 

symbols. (b) Corresponding tracer correlation factors, solid lines – calculated using ratio of the intrinsic diffusivities, 

symbols – calculated using experimental tracer data. 
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where C

AAD  etc are the ternary intrinsic diffusivities in the ternary alloy and C is, by convention the 

dependent concentration variable. Now we can make use of these equations in the analysis of 

intrinsic diffusion coefficients in the ternary alloy system (Ag-Cd-Zn). In Figure 3a we show results 

for the ratio of the exchange frequencies wCd / wAg and wZn / wAg  (Eqns. 11 and 12) using intrinsic 

diffusion data in the Ag - Cd - Zn system at T= 873 K [27]. Again it is possible to gain access to the 

corresponding tracer correlation factors fAg, fCd and fZn . For the ternary alloy system, either the 

diffusion kinetics formalisms of Manning and MAA can be employed for this task. The results 

using the MAA formalism are shown in Figure 3b. As in the binary Ag-Cd system discussed above, 

it can be seen that the Ag atoms are the least correlated in their motion (highest correlation factors).  
 

6 Diffusion and Thermodynamics of Materials

http://www.scientific.net/feedback/53042
http://www.scientific.net/feedback/53042


           

0

0.2

0.4

0.6

0.8

1.0

0.05 0.10 0.15 0.20

f
Ag

f
Cdf

Zn

T
ra

c
e
r 

C
o
rr

e
la

ti
o
n

 F
a
c
to

rs

(b)

1

10

0.05 0.10 0.15 0.20

w
Cd

/w
Ag

w
Zn

/w
Ag

(a)

 
Fig. 3a,b. The ratios of wZn/wAg, wCd/wAg and the corresponding tracer correlation factors (calculated by making use of 

the MAA formalism) in Ag-Cd-Zn alloys as a function of composition cCd,  cZn = 0.112.  

Analysis of Interdiffusion Coefficients  

Binary Alloys. The processing of the (single) interdiffusion coefficient in a binary alloy cannot be 

analyzed to give fundamental diffusion information except indirectly by way of its functional form 

on composition [13]. One possible method involves first expressing the interdiffusion coefficient 

(after dividing out the thermodynamic factor) in terms of the phenomenological coefficients and 

then using either Manning or MAA to express the phenomenological coefficients in terms of the 

ratio of the exchange frequencies. The resulting expression is then used as a fitting parameter to the 

experimental interdiffusion coefficient (divided by the thermodynamic factor) on composition; the 

ratio of the exchange frequencies can then be extracted as a fitting parameter. This analysis assumes 

that the vacancy concentration does not depend on composition (or is known independently) and 

that the thermodynamic factor is also known independently. The problem with the analysis in 

practice is that the fitting is numerically very sensitive and requires quite robust data over a very 

wide composition range to work well. 

Ternary alloys. The processing of the four interdiffusivities C

AAD
~

, C

ABD
~

, C

BBD
~

 and C

BAD
~

 in a 

ternary alloy system to obtain ratios of exchange frequencies, and then tracer correlation factors, 

can become quite involved. First, as a zeroth approximation or Darken-type approximation one can 

simply neglect the off-diagonal phenomenological coefficients in the analysis. It is then 

straightforward to show that the ratios of the exchange frequencies can be expressed as; see, for 

example [28]: 

)
~~~

))1((
~
))1(((

))
~~

()
~~

)(1)((1(

211122211211

11211121

C

BAA

C

BBA

C

AAB

C

ABBA

C

BB

C

BAA

C

AB

C

AABA

A

C

DmcDmcDmmcDmcmc

DmDmcDmDmcc

w

w

−++−−+−

−+−−−
= ;              (13) 

C

BAA

C

BBA

C

AAB

C

ABB

C

BB

C

BAA

C

AB

C

AAB

B

C

DmcDmcDmcDmc

DmDmcDmDmc

w

w
~~~~

)
~~

()
~~

)(1(

21112111

11211121

+−−

−+−−
= ,                                                        (14) 

or 

C

BAA

C

BBA

C

AAB

C

ABB

C

AA

C

ABB

C

BA

C

BBA

A

C

DmcDmcDmcDmc

DmDmcDmDmc

w

w
~~~~

)
~~

()
~~

)(1(

22122212

22122212

+−−

−+−−
=                                                         (15) 

Defect and Diffusion Forum Vol. 263 7

http://www.scientific.net/feedback/53042
http://www.scientific.net/feedback/53042


)
~~~

))1((
~
))1(((

))
~~

()
~~

)(1)((1(

22121112212122

12221222

C

AAB

C

ABB

C

BBA

C

AB

C

AB

C

AAB

C

BB

C

BAAB

B

C

DmcDmcDmmcDmcmc

DmDmcDmDmcc

w

w

−++−++−−

−+−−−
= ;            (16) 

where ∆m = m11 m22 - m12 m21, mij = cj (kT)
-1
 ∂µj /∂ ci and µ1 is the chemical potential of component 

A and µ2 is the chemical potential of component B. 
Manning [29], amongst many others, has argued that the off-diagonal phenomenological 

coefficients should never be neglected since they play an important role by carrying diffusion 

correlation information. However, for the purposes of obtaining ratios of exchange frequencies, 

Equations 13-16 should provide rough estimates, but for greater accuracy it would be necessary to 

include the off-diagonal coefficients. The inclusion of the off-diagonal phenomenological 

coefficients then would require the use of the Manning or MAA diffusion kinetics formalisms from 

the very beginning and either formalism can be quite complicated to implement, involving the 

solution of a large set of non-linear equations. Details of the utilization of these formalisms in this 

context can be found in [30,31]. Perhaps surprisingly, in austenitic Fe-Ni-Cr ternary alloys, upon 

processing the interdiffusion data it was found that there was not in fact a great deal of difference in 

either the ratio of exchange frequencies or the resulting tracer correlation factors. There is 

presumably a subtle cancellation of errors. In other words, it would appear that Eqns. 13-16 can in 

fact be used directly (with caution) to obtain the ratios of the exchange frequencies with the results 

then being used as input to a Manning (or MAA) analysis in order to obtain the corresponding 

tracer correlation factors. 
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Fig. 4 Tracer correlation factors in austenitic Fe-Ni-Cr as functions of Ni and Cr composition at 1373K. Filled circles 

represent two points where all tracer diffusion coefficients are available; open circles - results of analysis of the 

interdiffusion and thermodynamic data by making use of the MAA approach. 
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In Fig. 4 we give results for the tracer correlation factors from the full MAA analysis [30] of the 

extensive interdiffusion data provided by Duh and Dayananda [32] in the Fe-Ni-Cr system. In Fig. 

4 we have also included the corresponding results for the analysis of the tracer diffusion data (for 

two points only) [33]. It can be seen that there is quite reasonable consistency between these two 

quite different types of diffusion measurements.  

At high Ni compositions the Fe atoms show the least degree of correlation (highest correlation 

factors), whilst Ni atoms show the greatest degree of correlation (lowest correlation factors). The 

behavior of the Cr atoms falls between these extremes. On the other hand, at low Ni compositions 

the Cr atoms are the most correlated and Ni atoms are the least correlated whilst the behavior of Fe 

atoms falls in between. This crossing over of the correlation behavior appears to be a result of a 

change in the exchange frequencies with composition.        

Summary 

In this paper, we have discussed some of the theoretical procedures that have been established 

recently for analyzing intrinsic and interdiffusion data in binary and ternary alloy systems. 

Emphasis was put on extracting information to provide tracer correlation factors. Examples were 

taken from the intrinsic diffusion, interdiffusion and supporting tracer diffusion data when available 

in the Cu-Ni , Ag-Cd, Ag-Cd-Zn and Fe-Ni-Cr  alloy systems. 
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